ESSEXCOUNTY MATH LEAGUE STATISTICS SOLUTIONS MAY 22, 2013

1. An eight-sided die is numbered 1-8, a twelve sided die is numbered 1-12, and a twenty-sided die is numbered 1-20. All three dice are rolled. Assuming all dice are fair, what is the

probability of rolling a 5 on at least two of the dice?

	A) 0.0115 B) (0.0193	C) 0.0198	D) 0.0208			
	Solution: (C) Let F_1 , F_2 , F_3 die, respectively. Ther $P(F_1 \cap F_2 \cap F_3) = P(F_1 - \frac{1}{8} \cdot \frac{1}{12} \cdot \frac{19}{20} + \frac{1}{8} \cdot \frac{11}{12} \cdot \frac{1}{20} + \frac{1}{8} \cdot \frac{1}{12} \cdot \frac{1}{12$	n $P(\text{at least two 5}$ $F_1)P(F_2)P(\overline{F_3}) + P(\overline{F_3})$	$P(F_1 \cap F_2 \cap \overline{F_3}) - P(F_1)P(\overline{F_2})P(F_3) + P(\overline{F_1})P(\overline{F_2})P(F_3) + P(\overline{F_1})P(\overline{F_2})P(F_3) + P(\overline{F_1})P(\overline{F_2})P(F_3) + P(\overline{F_1})P(\overline{F_2})P(\overline{F_3}) + P(\overline{F_1})P(\overline{F_1})P(\overline{F_2})P(\overline{F_3}) + P(\overline{F_1})P(\overline{F_1})P(\overline{F_1})P(\overline{F_2})P(\overline{F_3}) + P(\overline{F_1})P(\overline{F_1})P(\overline{F_1})P(\overline{F_2})P(\overline{F_1}) + P(\overline{F_1})P(F_1$	$+P(F_1 \cap \overline{F}_2 \cap F_3) + P(F_1)$ $+P(F_2)P(F_3) + P(F_1)P(F_3)$	$\overline{F_1} \cap F_2 \cap F_3) +$		
2.	2. Which one of the follow	wing distributi	ons is <u>not</u> symmet	rical with respect to	o the mean.		
	A) Normal B) to E) All are symmetrical		, ,,	D) Uniform			
	Solution: (C) The Normal, distribution is not symmetric			nmetrical with respect	to the mean. The χ^2		
3.	3. A data set consists of so the outlier is removed f		outlier. Which of	the following will	change the most if		
	A) Mean B) I	Median	C) Mode	D) Midrange			
	Solution: (D) The mean wi may be affected slightly not be affected at all. S	ly, since removing	the outlier will shift t	the middle score(s) slig	thtly. The mode will		
4.	Which of the following	g are examples	of a discrete rando	om variable.			
	I) Shoe sizes as labeleII) The length of yarn sIII) The number of applIV) The time it takes co	scraps les picked in a	n orchard				
	A) I,III only B) I	II,III only	C) III only	D) III,IV only	E) IV only		
	So these are discrete ran	Solution: (A) Both I and III consist of values that can be listed, including shoe sizes, which include fractions. So these are discrete random variables. Both II and IV consist of values that include a range of real numbers. So these are continuous random variables.					

	A) I only	B) II,III only	C) I,III,IV only	D) III only	E) III,IV only
	mutually exclus Since it is impo exclusive. Since	sive. Since H_2 includes saible for heads to be to	is the possibility of E_1 of ossed on the second to are tossed on the second	ccurring, H_2 and E_1 as when E_2 occurs, H	toss, so H_2 and T_5 are not are not mutually exclusive. T_2 and T_2 are mutually and tails are tossed for T_2
6.	sample of 25 bat deviation of 11.7	s were weighed and	d found to have a n esis test is conducte	nean of 524.7 gra	3 grams. A random ms and a standard the 0.05 significance
	A) -6.15	B) -1.23	C) 1.23	D) 6.15	
	t distribution. To deviation is 11.	is a test of means whee The population mean is 7, and the sample size $\frac{4.7 - 510.3}{1.7 / \sqrt{25}} = 6.15$.	s claimed to be 510.3, t	he sample mean is 5	known, so this involves the 24.7, the sample standard
7.	For the problem positive critical	above, find the appropriate and the appropriate are two states are the states are	propriate critical va vo.	llue(s). Note: inc	licate only the
	A) 1.645	B) 1.708	C) 1.711	D) 1.960	E) 2.064
	Solution: (E) This right of the pos	sitive critical value is 0	ere are two critical values. There are 24 deg	ues, and the area of the grees of freedom. So	he critical region to the from Table B, the positive
8.		ata has a standard of . What is the new			ltiplied by -2 and
	A) -6 E) Not enough	B) -2 information to dete	C) 6 ermine	D) 10	
	-2 =2. Add	en multiplying the scor led the same number to tion of the new data is	each score does not c	e standard deviation hange the standard de	changes by a factor of eviation further. So the

5. A coin is tossed five times. Let H_2 be the event that heads are tossed on the second toss, T_5 be the event that tails are tossed on the fifth toss, E_1 be the event that heads are tossed on the first four tosses and tails are tossed on the fifth toss, and E_2 be the event that heads are tossed on the first toss and tails are tossed on the last four tosses. Which of the following pairs of

III) H_2 and E_2 IV) E_1 and E_2

events are mutually exclusive?

I) H_2 and T_5 II) H_2 and E_1

9.	Bill. If tails are t		n number is rolle	ssed or a 3 is rolled, Tom d, Bill wins \$20 from Ton or this game?			
	A) -\$2.50	B) \$0	C) \$0.83	D) \$1.67			
	when the event	{H1,H2,H3,T3,H4,H	15,H6} occurs, which	tossing a fair coin and a fair die a has probability 7/12. Tom low 4. Tom's expectation is $10 \cdot \frac{7}{12}$	ses \$20 when		
	me event {12,1	7, 103 000d15, Willow	ind producing of in	12	4		
10.	10. The weights of widgets are normally distributed with a mean of 23.4 ounces and a standard deviation of 4.7 ounces. A random sample of widgets is chosen. What is the probability the mean weight is less than 25.1 ounces?						
	A) 0.6406	B) 0.9554	C) 0.9999	D) Not enough infor	rmation		
	Solution: (D) Since the probability to be determined involves the mean weight of the sample, in order to find the probability, the sample size would be needed. There is not enough information in this problem to determine the sample size.						
11	bottles is more the company will ret	nan 11.8 ounces.	A hypothesis test ttle filling proced	of cola in their twelve oun t is conducted on the plant lure if the claim is support	t's claim. The		
	B) Changing theC) Changing theD) Changing the	e bottle filling pro bottle filling pro bottle filling pro	ocedure when the ocedure when the ocedure when the	actual mean is at most 11 actual mean is not 12.0 or actual mean is more than actual mean is at most 11 actual mean is more than	unces. 11.8 ounces8 ounces.		
	alternate hypotl amount of cola However, with	hesis is supported wh is more than 11.8 ou	nen it is false. The al ances. If true, then the rocedure would be re	rejected when it is true, or equiternate hypothesis for this situate plant would retain the bottle trained even though the statemences.	ation is the mean filling procedure.		
12	2. One wheel is evenly divided into three sections numbered $0,1,2$. A second wheel is evenly divided into three sections numbered $1,2,3$. Both wheels are spun. Let X be the product of the numbers on the wheels. Find the standard deviation of X .						
	A) 0.7	B) 1.9	C) 2.8	D) 3.3			
Solution: (B) The elements of the sample space are (0,1), (0,2), (0,3), (1,1), (1,2), (1,3), (2,1) respective values of X are 0, 0, 0, 1, 2, 3, 2, 4, 6. So the probability distribution is							
				$(-2)^2 \cdot \frac{2}{9} + (3-2)^2 \cdot \frac{1}{9} + (4-2)^2 \cdot \frac{1}{9}$			
	$\sigma(X) = \sqrt{\frac{34}{9}} =$	1.9.					

fair coin is flip tail is tossed.	ped three times. I	Find the probabilit	y of rolling a 1 or 2	2 given that exactly one	9	
A) 1/4	B) 2/5	C) 1/2 =	D) 4/7			
two coins are	tossed, the possibility	ies are HH, HT, TH,	TT, so $P(B A) = \frac{1}{2}$.	When three coins are tossed	l,	
the possibility	B) $2/5$ C) $1/2$ D) $4/7$ Let A be the event a 1 or 2 is rolled on the die, and let B be the event of tossing one tail. When is are tossed, the possibilities are HH, HT, TH, TT, so $P(B A) = \frac{1}{2}$. When three coins are tossed, bilities are HHH, HHT, HTH, HTT, THH, THT, TTH, TTT, so $P(B A) = \frac{1}{2}$. When three coins are tossed, bilities are HHH, HHT, HTH, HTT, THH, THT, TTH, TTT, so $P(B A) = \frac{3}{8}$. $= \frac{P(A \cap B)}{P(B)} = \frac{P(A \cap B)}{P(A \cap B) + P(\overline{A} \cap B)} = \frac{P(A)P(B A)}{P(A)P(B A) + P(\overline{A})P(B \overline{A})} = \frac{(1/3)(1/2)}{(1/3)(1/2) + (2/3)(3/8)} = \frac{2/12}{4} = \frac{2}{5/12} = \frac{2}{5}$. data points (x,y) satisfy the equation $2x + 3y = 36$. Which of the following is the coefficient? B) $-2/3$ C) 0 D) $2/3$ E) 1 Because the data points all fall on the line, there is perfect linear correlation. The equation of the on line is $\hat{y} = -\frac{2}{3}x + 12$, indicating negative correlation. Thus, the correlation coefficient is -1 . It of turkeys on a poultry farm is normally distributed with a mean of 21.4 pounds and that 9% of the turkeys weight more than 24.1 pounds. Find the percentage of at weigh less than 22.3 pounds. B) 0.6736 C) 0.8159 D) 0.9641 ough information c) Let X be the normal random variable representing the weight of turkeys. The mean is 21.4. Let					
		$\frac{(A)}{A - P(\overline{A} \cap B)} = \frac{1}{P(A)P(A)}$	$\frac{P(A)P(B \mid A)}{B \mid A) + P(\overline{A})P(B \mid \overline{A})} =$	$=\frac{(1/3)(1/2)}{(1/3)(1/2)+(2/3)(3/8)}=$	3	
14. All paired data correlation coe		y the equation 2x	+3y = 36. Which	of the following is the		
A) -1	B) -2/3	C) 0	D) 2/3	E) 1		
					he	
It was found th	nat 9% of the turke	eys weight more th	-			
A) 0.6368F) Not enough	•	C) 0.8159	D) 0.9641			
	Solution: (B) Let X be the normal random variable representing the weight of turkeys. The mean is 21.4. Let σ be the standard deviation. From the information given, $P(X > 24.1) = P\left(Z > \frac{24.1 - 21.4}{\sigma}\right) = \frac{1}{24.1 - 21.4}$					
(0)				$(.34) = 0.91 \rightarrow \frac{2.7}{\sigma} = 1.34 \rightarrow$,	
$\sigma = \frac{2.7}{1.34} = 2$	0.P(X < 22.3) = P(X < 22.3)	$Z < \frac{22.3 - 21.4}{2.0} = P($	Z < 0.45) = 0.6736.			

13. A fair six-sided die is rolled. If a 1 or 2 is rolled, a fair coin is flipped twice. Otherwise, a

16. A company sells boxes of candy consisting of five flavors. A consumer group tests the claim that the proportion of flavors are equal at the 0.05 significance level by testing a random sample of 30 candies. Find the appropriate critical value for this test.

A) 9.49

B) 11.07

C) 42.56

D) 43.77

Solution: (A) This is a goodness of fit (multinomial experiment) test, is a right tail test that uses the χ^2 distribution. The degrees of freedom is one fewer than the number of categories, which is 4. From Table C, the critical value is 9.49

- 17. A car rental agency has 225 reservations for Friday, and 190 cars available. Current studies have shown that 80% of customers keep the reservations. Use normal approximation to approximate the probability that all the customers who keep the reservations on Friday will get a car.
 - A) 0.9332
- B) 0.9429
- C) 0.9525
- D) 0.9599
- Solution: (D) Let X be the binomial random variable representing the number of customers that keep their reservations. Let \tilde{X} be the normal approximation of X. The mean of X is $\mu = np = 225(0.8) = 180$, and the standard deviation of X is $\sigma = \sqrt{np(1-p)} = \sqrt{225(0.8)(0.2)} = 6$. In order for there to be enough cars on Friday, at most 190 of the customers must keep the reservations. $P(X \le 190) \approx P(\tilde{X} < 190.5) = P(Z < 190.5 180) = P(Z < 1.75) = 0.9599$.
- 18. While doing research on data, Sue calculated the mean and standard deviation of a sample to be 17.1 and 4.4, respectively. When reviewing her calculation, Sue discovered that one of the scores was erroneously recorded as 12 was really 21. Which of the following statements is true?
 - A) The actual sample standard deviation is less than 4.4
 - B) The actual sample standard deviation is 4.4
 - C) The actual sample standard deviation is greater than 4.4
 - D) Not enough information to make one of the above conclusions.
 - Solution: (A) The score of 12 is 5.1 units away from the mean. The score of 21 is closer to the mean of 17.1. In fact, the actual mean is slightly higher. Thus, the standard deviation will decrease.
- 19. Because the probability of having a positive blood test for disease H from one person is 0.001, a lab will combine 40 samples to test. If the test is negative, that means that all 40 samples are negative for disease H. Otherwise, the tests will have to be done on the individual samples. If a lab conducts such a test, what is the probability that the lab will have to test all 40 samples?
 - A) 0.000761
- B) 0.0250
- C) 0.0384
- D) 0.0392

Solution: (D) Let X be the binomial random variable that represents the number of positive tests. We have n = 40 and p = 0.001. The lab will have to test all 40 samples if X is greater than 0. P(X > 0) =

$$1 - P(X = 0) = 1 - \left[\binom{40}{0} (0.001)^{0} (0.999)^{40} \right] = 1 - 0.9608 = 0.0392.$$

- 20. A company is developing a vending machine that accepts quarters. The machine will accept a quarter provided the quarter weighs less than 5.73 grams. A study was conducted in which random samples of 50 quarters were weighed, and it was found that the probability that the mean weight of a sample is less than 5.73 grams is 0.998. Which of the following statements is not true based on the above information?
 - A) The mean weight of a quarter is less than 5.73 grams.
 - B) About 99.8% of quarters would be accepted by the machine.
 - C) More than half of the quarters would be accepted by the machine.
 - D) It is not known what percentage of coins would be accepted by the machine.
 - E) All of the statements are true.
- Solution: (B) The sample mean of 50 quarters is less than 5.73. Since the sample mean is equal to the mean of the individual quarters, statement A is true. As such, more than half of the quarters would be accepted, so statement C is true. Since the standard deviation cannot be determined by the above information, statement D is true. While there is a 99.8% chance that the sample mean is less than 5.73 grams, a smaller percentage (but still more than half) of individual quarters would be accepted by the machine (as per Central Limit Theorem). Thus, statement B is not true.
- 21. Consider the incomplete contingency table below. The numbers in the total rows or columns represent the actual total for the given row or column. The numbers in the Yes-A and No-C cells represent the expected numbers (rounded off) if the row and column variables are independent. Find the grand total.

	Yes	No	Not Sure	Total
A	103.59	Har neighbors		x
В				263
С		164.21	4	315
Total	350	у	43	t

Solution: (821) We have the following equations relating x and t. $x+263+315=t \rightarrow x=t-578$ and

$$\frac{350x}{t} = 103.59 \rightarrow x = \frac{103.59t}{350}$$
. Setting the equations equal to each other, we get

$$t - 578 = \frac{103.59t}{350} \rightarrow t - \frac{103.59t}{350} = 578 \rightarrow \left(1 - \frac{103.59}{350}\right)t = 578 \rightarrow \frac{246.41}{350}t = 578 \rightarrow t = 821. \text{ Equations relating } y$$
 and t can also be used.